Harnessing Health Information Technology to Assist Individuals and Teams: Practical Insights from the Journal of Ambulatory Care Management, PBRN issue, April-June 2014

Presented By:
John Wasson, MD; Christopher Masi, MD, PhD; Kenneth Anderson, DO, MS, CPE; Neda Ratanawongsa, MD, MPH; Sonja Likumahuwa, MID, MPH; Christine Nelson, PhD, RN

Moderated By:
Rebecca Roper, MS, MPH, Director, Practice-Based Research Network Initiative, Agency for Healthcare Research and Quality

Sponsored by the AHRQ PBRN Resource Center
April 29, 2014
Agenda

• Welcome and introductions
• Overview of special JACM PBRN journal issue
• Presentations of innovative strategies featured in JACM PBRN journal issue
 ▶ Brief Q&A session following each presentation
• Q&A session with full panel
• Instructions for obtaining CME credits

Note: After today’s webinar, a copy of the slides will be e-mailed to all webinar participants.
How to Submit a Question

- At any time during the presentation, type your question into the “Questions” section of your GoToWebinar control panel.
- Select “Send” to submit your question to the moderator.
- Questions will be read aloud by the moderator.
Harnessing Health Information Technology to Help Patients and Teams: How Do We Make Static Become Dynamic?

John Wasson, MD,
Dartmouth Medical School
and Journal of Ambulatory Care Management
Today’s Presenters

A Technology-based Quality Innovation to Identify Undiagnosed Hypertension among Active Primary Care Patients

Christopher Masi, MD, PhD
NorthShore University HealthSystem

Kenneth Anderson, DO, MS, CPE
Health Research and Education Trust, American Hospital Association (formerly NorthShore University HealthSystem)
Today’s Presenters

Diabetes health information technology innovation to improve quality of life for health plan members in urban safety net

Neda Ratanawongsa, MD, MPH
University of California, San Francisco Center for Vulnerable Populations
Today’s Presenters

Use of Qualitative Methods and User-Centered Design to Develop Customized Health Information Technology Tools within Federally-Qualified Health Centers to Keep Children Insured

Sonja Likumahuwa, MID, MPH, Oregon Health & Science University Department of Family Medicine

Christine Nelson, PhD, RN, OCHIN Practice-Based Research Network
Harnessing Health Information Technology to Help Patients and Teams

How Do We Make Static Become Dynamic?

✔ Articles from PBRNs
✔ Snap Shots: 1500 words; Patient Engagement; Technology

Harnessing Health Information Technology to Help Patients and Teams to

Attain Health Confidence

- Measurement of Health Confidence using a deceptively simple question: How confident are you that you can manage and control most of your health problems?

- A family of assessment and reporting tools called HowsYourHealth.org that enable practices to efficiently utilize patient-reported information and collaborate with them on improving their Health Confidence... and much more.

- Output from the technology that automatically provides physicians the data they need to redesign a more efficient and effective office practice.

Also Freely Available to Practices and PBRNs
A Technology-based Quality Innovation to Identify Undiagnosed Hypertension among Active Primary Care Patients

Michael Rakotz,1 Ken Anderson,1 Bernard Ewigman,1,2 Menaka Sarav,1 Ruth Ross,1 Ari Robicsek,1 Chad Konchak,1 Thomas Gavagan,3 David Baker,4 David Hyman,5 Christopher Masi1

1 NorthShore University HealthSystem
2 The University of Chicago Pritzker School of Medicine
3 UIC College of Medicine
4 Northwestern University Feinberg School of Medicine
5 Baylor College of Medicine
Background

- Hypertension (BP ≥ 140/90 mm Hg) affects 33% of all U.S. adults age 20 and older
- Leading modifiable risk factor for CAD, stroke, CHF, and kidney failure
- 1 in 14 U.S. adults has BP ≥ 140/90 mm Hg but has never been informed they have hypertension
- The estimated cost (in billions) related to medical care and lost productivity in 2010:
 - $93.5 for hypertension, $108.9 for CAD, $53.9 for stroke, and $34.4 for CHF
Background

- Variability in office blood pressure readings and physician mistrust of the accuracy of these readings contribute to hesitancy to diagnose hypertension.
- 24-hour Ambulatory Blood Pressure Measurement (ABPM) is often recommended for diagnosing hypertension.
- However, ABPM is cumbersome and not well tolerated by a significant proportion of patients.
- Ambulatory Office Blood Pressure (AOBP) devices are simple to use and 5 readings one minute apart correlate well with daytime mean ABPM readings.
Goals of the Study

• Apply computerized screening algorithms to the EHR’s of primary care patients in an integrated health system to identify those who may have undiagnosed hypertension

• Evaluate these at-risk patients using an AOBP device to make an accurate diagnosis
Methods

• Inclusion criteria:
 – 18-79 years old
 – received care within our network of 23 primary care practices between 1/1/2009 and 12/31/2010

• Exclusion criterion:
 – An EHR diagnosis of hypertension, prehypertension, white coat hypertension, or elevated blood pressure

• Three computerized HTN screening algorithms were developed and applied to the EHR’s of eligible patients
Methods

Algorithms Used to Screen for Undiagnosed Hypertension

1. All patients whose three most recent encounters yielded a mean SBP ≥ 140 mm Hg or a mean DBP ≥ 90 mm. Encounters used were within 12 months prior to their most recent encounter.

2. All patients who had three encounters with a SBP ≥ 140 or DBP ≥ 90 mm Hg within 12 months prior to their most recent encounter.

3. Patients who had a single encounter with a SBP ≥ 180 or a DBP ≥ 100 mm Hg within 12 months prior to their most recent encounter.

SBP, systolic blood pressure; DBP, diastolic blood pressure. All data were obtained from outpatient encounters with a PCP or specialist.
Methods

• Those who met the computerized screening criteria were mailed a letter inviting them to make an appointment for a follow-up clinic visit

• Up to three follow-up telephone calls were made if patients did not arrange this appointment

• Once in the clinic, each patient completed an AOBP screen using the BpTRU device
 – “AOBP Mean”
Methods

• Positive predictive values (PPVs) of screening algorithms were calculated using the AOBP mean from the BpTru device

• Diagnosed as hypertensive if SBP ≥ 135 mmHg or DBP ≥ 85 mmHg

• PPV = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}
Results

139,666 patients met initial screening criteria

47,822 patients excluded due to an established diagnosis of hypertension, white coat hypertension, pre-hypertension, or elevated blood pressure

91,844 patients qualified for additional screening using computerized algorithms

90,258 patients did not satisfy any of the computerized hypertension screening algorithms

3 hypertension screening algorithms applied

1,586 unique patients satisfied at least one algorithm

154 patients deemed not suitable for recruitment by their primary care physician

Primary care physicians reviewed their lists of identified patients

1,432 patients targeted for recruitment into the study
Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Number Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All patients whose three most recent encounters yielded a mean SBP ≥ 140 mm Hg or a mean DBP ≥ 90 mm. Encounters used were within 12 months prior to their most recent encounter.</td>
<td>720</td>
</tr>
<tr>
<td>2. All patients who had three encounters with a SBP ≥ 140 or DBP ≥ 90 mm Hg within 12 months prior to their most recent encounter.</td>
<td>968</td>
</tr>
<tr>
<td>3. Patients who had a single encounter with a SBP ≥ 180 or a DBP ≥ 100 mm Hg within 12 months prior to their most recent encounter.</td>
<td>527</td>
</tr>
</tbody>
</table>

Unique patients identified by Algorithms 1, 2, or 3 1,586

SBP, systolic blood pressure; DBP, diastolic blood pressure. All data were obtained from outpatient encounters with a PCP or specialist.
Results

Among 1,432 patients targeted for recruitment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Participants (n=475)</th>
<th>Non-Participants (n=957)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median y, (IQR)</td>
<td>54.4 (44.5-64.9)</td>
<td>50.1 (38.9-60.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>SBP, mean mm Hg, (SD)</td>
<td>136.5 (9.35)</td>
<td>136.1 (9.76)</td>
<td>0.46</td>
</tr>
<tr>
<td>DBP, mean mm Hg, (SD)</td>
<td>82.3 (7.05)</td>
<td>82.5 (7.25)</td>
<td>0.52</td>
</tr>
<tr>
<td>BMI, median kg/m², (IQR)</td>
<td>29.6 (26.3-33.8)</td>
<td>30.1 (26.1-34.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>Gender, female, (%)</td>
<td>226 (47.6)</td>
<td>459 (48)</td>
<td>0.89</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>African American (%)</td>
<td>29 (6.1)</td>
<td>42 (4.4)</td>
<td></td>
</tr>
<tr>
<td>Asian (%)</td>
<td>13 (2.7)</td>
<td>26 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>337 (70.9)</td>
<td>655 (68.5)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino (%)</td>
<td>16 (3.4)</td>
<td>42 (4.4)</td>
<td></td>
</tr>
<tr>
<td>Other (%)</td>
<td>80 (16.8)</td>
<td>192 (20.1)</td>
<td></td>
</tr>
<tr>
<td>GERD (%)</td>
<td>72 (15.2)</td>
<td>129 (13.5)</td>
<td>0.39</td>
</tr>
<tr>
<td>Asthma (%)</td>
<td>36 (7.6)</td>
<td>104 (10.9)</td>
<td>0.05</td>
</tr>
<tr>
<td>Depression (%)</td>
<td>36 (7.6)</td>
<td>75 (7.8)</td>
<td>0.89</td>
</tr>
<tr>
<td>Diabetes Mellitus (%)</td>
<td>29 (6.1)</td>
<td>62 (6.5)</td>
<td>0.77</td>
</tr>
<tr>
<td>COPD (%)</td>
<td>10 (2.1)</td>
<td>16 (1.7)</td>
<td>0.59</td>
</tr>
<tr>
<td>CAD (%)</td>
<td>5 (1.1)</td>
<td>13 (1.4)</td>
<td>0.64</td>
</tr>
<tr>
<td>CHF (%)</td>
<td>2 (0.4)</td>
<td>7 (0.7)</td>
<td>0.49</td>
</tr>
<tr>
<td>Prior MI (%)</td>
<td>1 (0.2)</td>
<td>2 (0.2)</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Identified as at-risk of undiagnosed hypertension and completed AOBP</th>
<th>Found to be hypertensive by AOBP, SBP ≥ 135 mm Hg or DBP ≥ 85 mm Hg</th>
<th>PPV (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>234</td>
<td>136</td>
<td>58</td>
<td>51-65</td>
</tr>
<tr>
<td>2</td>
<td>321</td>
<td>168</td>
<td>52</td>
<td>47-58</td>
</tr>
<tr>
<td>3</td>
<td>138</td>
<td>70</td>
<td>51</td>
<td>42-59</td>
</tr>
<tr>
<td>Any</td>
<td>475</td>
<td>249</td>
<td>52</td>
<td>48-57</td>
</tr>
</tbody>
</table>

AOBP, automated office blood pressure; BP, blood pressure; PPV, positive predictive value; CI, confidence interval.
Results

24-month follow-up of all 1,432 patients initially targeted for recruitment

1,432 patients targeted for recruitment into the study

399 lost to follow-up:
- 23 deceased,
- 83 left the health system,
- 293 had not been seen by their PCP in the 24 months of the follow-up period (non-active patients)

1,033 patients followed during study months 1-30 (Phase 1 and Phase 2)

520 patients completed AOBP protocol (411 in Phase 1 and 109 in Phase 2)

- 246 diagnosed with hypertension (ICD-9 401.0 - 405.9)
- 185 diagnosed with white coat hypertension, pre-hypertension, or elevated BP (ICD-9 796.2)
- 89 classified as not hypertensive

513 patients did not complete AOBP protocol

- 115 diagnosed with hypertension (ICD-9 401.0 - 405.9)
- 105 diagnosed with white coat hypertension, pre-hypertension, or elevated BP (ICD-9 796.2)
- 293 at-risk for undiagnosed hypertension
Summary

• 1,432 adults met the criteria of one or more hypertension screening algorithms and were recruited for evaluation

• Of these, 475 completed an office-based AOBP and 249 (52.4%) were diagnosed with hypertension

• By the end of the 24-month follow-up, 72% of the original 1,432 patients had received a diagnosis
 – 361 had hypertension
 – 290 had either white coat HTN, pre-HTN, or elevated BP
 – 89 were classified as having a normal BP
Limitations

• Algorithms likely did not identify a significant number of individuals at-risk for hypertension
 – Less strict screening criteria would probably increase sensitivity but decrease specificity

• Computerized screening algorithms were based upon prior manual BP readings, which may have been inaccurate – need to standardize

• Conducting AOBP reading on all at-risk patients (n = 1,432) may have resulted in different PPV’s
 – But non-participants were similar to participants
Implications

- Our technology-based hypertension screening program relied upon:
 - EHRs, computerized screening algorithms, and follow-up AOBP measurements

- We expect EHR’s and screening algorithms will increasingly be used to diagnose chronic diseases:
 - Hypertension (AOBP or other BP measurement protocol)
 - Diabetes & chronic kidney disease (BMP)
 - Hepatitis & fatty liver disease (CMP)
 - Anemia (CBC)
 - Arrhythmia, hypertension overtreatment (syncope history)
Thank you
Diabetes health information technology innovation to improve quality of life for health plan members in urban safety net

Neda Ratanawongsa, MD, MPH
UCSF Center for Vulnerable Populations
Disclosures

- I have no conflicts of interest to disclose. The funders had no role in design, data collection, analysis, or presentation

- AHRQ 5R18HS017261
- AHRQ 5R21HS014864
- NIDDK 1P30-DK092924
- NIH UL1 RR024131 (SFCRN)
- CDC Division of Diabetes Translation grant
- California Diabetes Program
- McKesson Foundation
Defining our communities

- Practice-based researchers in CA safety net:
 - Persons with diabetes in San Francisco Community Health Network (CHNSF)
 - Primary care clinicians
 - Health plan / insurers overseeing care for persons with diabetes
 - Representative of larger CA communities

- 10-year evolution: disparities → interventions → practice-/population-based implementation
Objectives

- Disparities in diabetes health due to communication barriers in traditional health care
- Diabetes self-management health IT intervention
 - Practice-based research \rightarrow population-based implementation
 - Impact on self-management and quality of life
- Learning opportunities and next steps
Limited Health Literacy (LHL)

- Over half of public hospital pts
- Average reading level for Medicaid patient: grade 5
- Impact on health outcomes:
 - Poorer knowledge of chronic conditions
 - Worse self-care
 - Higher utilization of services
 - Worse health outcomes
 - Poor glycemic control (AOR 2.03; p = 0.02)

... And Poor Communication with Clinicians

- MD Uses Words Not Understood*: OR=3.2, p<0.01
- MD Gives You Test Results w/o Explanation*: OR=3.3, p=0.02
- Pt Confused About Medical Care*: OR=2.4, p=0.02
- MD Understands Problems Doing Rx**: OR=1.9, p=0.04

* Usually / Always
** Never, Rarely, Sometimes

Schillinger PEC 2004
Limited English Proficiency (LEP) & Lack of Language-Concordant Care

- 6.2 million (19%) in California 2000 census
- LEP Asian immigrants using interpreters report unasked questions about care (30% vs. 21%, P<.001)
- LEP Latinos with language discordant MD had increased odds of poor control (AOR 1.98)
- Less likely to report receiving self-mgmt advice

Wilson 2005; Fernandez 2010; Green AR 2005; Lopez-Quintero 2009
Health IT for Self-Management Support

- Self-management support improves behaviors, satisfaction, and outcomes
- Desired by patients with LHL and LEP
- Automated telephone self-management (ATSM)
 - 97% of adults in CA have phone
 - Relatively inexpensive and efficient
 - Control jargon, volume, pace, and language
 - Effective in diverse, low income patients

Sarkar 2008
Improving Diabetes Efforts Across Language and Literacy (IDEALL)

- Developed with users
- Preferred language
- Weekly surveillance
- Touch tone response
- Tailored education

Language-concordant care managers respond to out-of-range triggers

- Notify clinics
- ATSM
- NP Care manager
- PCP

UCSF CVP
Center for Vulnerable Populations at SFGH
IDEALL Development Process

1) Identify priority population/condition and objectives
2) Harness registry and network to identify population
3) Develop queries to solicit questions and concerns
4) Write and revise health education (cooperative process)
5) Pilot questions and health education responses with pts
6) Translate and adapt toward cultural appropriateness
7) Record and code
8) Design callback algorithm (scenarios) and trigger reports
9) Beta-test
10) Train clinical staff
11) Launch
Health IT Can Promote Patient-Centered Diabetes Care (IDEALL)

- Randomized trial: ATSM, group visits, & usual care
- 339 patients with poorly controlled DM
 - 43% Spanish- and 11% Cantonese-speaking
- 94% completed ≥1 call → 84% ≥1 action plan
- High PCP satisfaction
 - Perceived activated pts & higher quality of care
 - Overcoming barriers to LEP & med mgmt

Schillinger 2009, Ratanawongsa 2012
IDEALL Program Outcomes

- Improved:
 - Interpersonal communication with providers
 - Self-management behaviors (diet, exercise)
 - Functional status & days confined to bed
 - Detection of adverse / potentially adverse events

- Cost-effective:
 - $65,167 for set-up and ongoing costs
 - $32,333 for ongoing costs only

Schillinger 2009; Sarkar 2008; Handley 2008
Potential for Medicaid Partnership

- **Goals:**
 - Improve coordination of care
 - Support patients and clinicians
 - Promote personal control over services
 - Harness IT to reduce disparities

- **Survey of CA Medicaid managed care plans**
 - Few had chronic care mgmt targeting LEP/LHL
 - 68% planning to expand programs for diabetes
 - Barriers: cost of broad implementation and IT

Goldman 2007
SMART Steps: Partnering to Put Research Into Practice

- San Francisco Health Plan (SFHP): nonprofit govt-sponsored Medicaid managed-care plan
 - Linguistically diverse vulnerable population
 - SFHP recruitment for members from 4 clinics
 - SFHP implementation
 - Evaluation by UCSF
Quasi-Experimental Study Design

- SFHP did not want control group (no intervention)
- Preferred staggering of rollout for staffing
- Wait list with 6-mo crossover, recruiting in waves

Handley 2011
Intervention: ATSM + health coach

- 27 weeks of ATSM calls
- SFHP health coach for follow-up calls
 - Tailored training & scripts

<table>
<thead>
<tr>
<th>Question</th>
<th>Call Back Trigger</th>
<th>Prosodie Education (use to guide education during callback)</th>
<th>SMART Steps Scripts</th>
</tr>
</thead>
</table>
| In the last 7 days, how many days did you MISS taking your DIABETES medications, even just one pill or shot? Was it 0 days, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days? Press the number of days that you MISSED taking your | 3-7 | You might be going through something similar to Mrs. Jones. Mrs. Jones sometimes forgot to take all of her diabetes pills. She also stopped taking her pills when she felt good. After a few weeks she began to feel tired and sick and went to see her doctor. Her doctor was very worried about her | Nonjudgmental: “Many patients take their medications differently from the way they are prescribed. It’s important for me to understand how you’re taking your medications.”

 Check accuracy: “In this week’s call, you answered that you missed your diabetes medications ___ days this week. Is that correct?”

 Check understanding about diabetes meds:
 - “What medications are you taking for diabetes now? Tell me their names. How much do you take? What they are for?”
 - “Do you have the bottles? Can you get them and read the name / instructions on them?”
 - “Are you taking a medication called ___? Tell me how you’re taking it.”
 - “I just want to check about ___ medication. Your health care team thinks you are taking ___ medication ___ times per day. That seems different from what you just said. Tell me more about that.”

 Check for barriers to adherence:
 - “What side effects or problems do you have when you take ___?”
Outcomes

- Engagement in ATSM
 - % completing calls
- Compare intervention vs. waitlist in change from baseline to 6-month:
 - Summary of Diabetes Self-Care Activities
 - Quality of life (SF-12)
 - Cardiometabolic markers

Toobert 2000, Ware 1996
Assessed for Eligibility (n=910)

Randomized (n=362)

Excluded (n=548)
Not meeting inclusion criteria (n=220)
Declined to participate (n=160)
Unable to contact (n=168)

Intervention (n=182)

Completed Baseline Interview (n=145)
Completed 6-Month Interview (n=137)
Included in analysis (n=127)

Wait-list (n=180)

Completed Baseline Interview (n=133)
Completed 6-Month Interview (n=141)
Included in analysis (n=125)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention (n=127)</th>
<th>Wait-List (n=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean (SD)</td>
<td>56.6 (7.9)</td>
<td>54.9 (8.6)</td>
</tr>
<tr>
<td>Women</td>
<td>77%</td>
<td>72%</td>
</tr>
<tr>
<td>Latino</td>
<td>26%</td>
<td>20%</td>
</tr>
<tr>
<td>Black / African-American</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Asian / Pacific Islander</td>
<td>60%</td>
<td>62%</td>
</tr>
<tr>
<td>White / Caucasian</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Born Outside the U.S.</td>
<td>86%</td>
<td>85%</td>
</tr>
<tr>
<td>Cantonese-speaking</td>
<td>54%</td>
<td>55%</td>
</tr>
<tr>
<td>Spanish-speaking</td>
<td>20%</td>
<td>19%</td>
</tr>
<tr>
<td>8th grade education or less</td>
<td>39%</td>
<td>47%</td>
</tr>
<tr>
<td>Limited health literacy</td>
<td>47%</td>
<td>40%</td>
</tr>
<tr>
<td>Income ≤ $20,000 / Yr</td>
<td>61%</td>
<td>60%</td>
</tr>
<tr>
<td>Hgb A1c >8.0%</td>
<td>30%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Engagement by Language Among Patients Exposed to 27 Calls (n=273)

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Cantonese (N=141)</th>
<th>Spanish (N=52)</th>
<th>English (N=80)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed ≥1 Call, %</td>
<td>85%</td>
<td>90%</td>
<td>81%</td>
<td>80%</td>
<td>0.07</td>
</tr>
<tr>
<td>Number of completed calls, median (IQR)</td>
<td>19 (4-24)</td>
<td>21 (11 – 26)</td>
<td>10.5 (2 – 19.5)</td>
<td>9 (2 – 23)</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Change in Self-Care at 6 Months (n=252)

<table>
<thead>
<tr>
<th></th>
<th>Adjusted* Difference (95% CI)</th>
<th>Standardized Effect Size*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Self-Care</td>
<td>0.2 (0.1, 0.4)</td>
<td>0.29</td>
<td><0.01</td>
</tr>
<tr>
<td>Glucose monitoring</td>
<td>0.7 (0.2, 1.3)</td>
<td>0.30</td>
<td><0.01</td>
</tr>
<tr>
<td>Foot care</td>
<td>0.6 (0.2, 0.9)</td>
<td>0.32</td>
<td><0.01</td>
</tr>
<tr>
<td>Med adherence</td>
<td>0.0 (-0.2, 0.2)</td>
<td>0.02</td>
<td>0.82</td>
</tr>
</tbody>
</table>

*Controlling for baseline value
Change in Quality of Life at 6 Mos (n=242)

<table>
<thead>
<tr>
<th></th>
<th>Adjusted* Difference (95% CI)</th>
<th>Standardized Effect Size*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Component SF-12</td>
<td>2.0 (0.1, 3.9)</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>Mental Component SF-12</td>
<td>1.3 (-1.0, 3.6)</td>
<td>0.14</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*Controlling for baseline value
Change in Cardiometabolic Markers (n=252)

<table>
<thead>
<tr>
<th></th>
<th>Adjusted* Difference (95% CI)</th>
<th>Standardized Effect Size*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin A1c</td>
<td>-0.3 (-0.6, 0.1)</td>
<td>-0.22</td>
<td>NS</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>0.6 (-3.8, 5.1)</td>
<td>0.03</td>
<td>NS</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>2.1 (-0.6, 4.9)</td>
<td>0.19</td>
<td>NS</td>
</tr>
<tr>
<td>Low-density lipoprotein</td>
<td>11.0 (-6.5, 28.4)</td>
<td>0.28</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Controlling for baseline value
Successful Engagement

- Partnering with LHL / LEP patients:
 - Bicultural and bilingual content
 - Unmet need for language-concordant support
- Practice-based research:
 - Innovate and create from within
 - Invest in the safety net providers
- Partnership with Medicaid managed care plan
 - Population-based implementation
 - Long-term relationships
Learning Opportunities

- Phone-based population recruitment
- Health coaches
 - Tailoring, training, and turnover
 - Bicultural as well as bilingual staff
- Fidelity: data collection & feedback
- Quasi-experimental designs beyond RCT

Handley 2011 (in press)
Center for Vulnerable Populations at SFGH
Future Directions

- **Scope**: develop new content for health promotion self-mgmt across health conditions
- **Platform**: mHealth beyond telephone outreach
- **Linkages to patient-centered medical home, including electronic health records**
- **Reach and sustainability**:
 - Within our health system
 - Medicaid and other insurers
Acknowledgements

- PI: Dean Schillinger
- Co-investigators: Margaret Handley, Judy Quan, Kelly Pfeifer, Urmimala Sarkar, Catalina Soria
- San Francisco Health Plan: Allison Lum, Dawn Surratt, Karen Fong, Jennifer Beach, Juanita Gonzalez, Nicole Lam, and Stanley Tan
- California Diabetes Program
- San Francisco Bay Area Collaborative Research Network
- Health Delivery Systems Center for Diabetes Translational Research
Contact Information

Neda Ratanawongsa, MD, MPH
ratanawongsan@medsfgh.ucsf.edu
USE OF QUALITATIVE METHODS AND USER-CENTERED DESIGN TO DEVELOP CUSTOMIZED HEALTH INFORMATION TECHNOLOGY TOOLS WITHIN FEDERALLY-QUALIFIED HEALTH CENTERS TO KEEP CHILDREN INSURED

Christine Nelson, PhD, RN
Sonja Likumahuwa, MPH, MID
Innovative Methods for Parents And Clinics to Create Tools for Kids’ Care (IMPACCT Kids’ Care)
- Develop and test new HIT tools to enhance insurance outreach efforts
- PCORI funded; first round funding
- Project Period: 2013-2016
- PI: Jennifer E. DeVoe, MD, DPhil
- Phase 1: Qualitative data collection and tool development
| Stable health insurance facilitates access to health care for children |
| Coverage gaps are associated with unmet health care needs and poor health outcomes |
| Despite federal initiatives to increase coverage, millions of US children remain uninsured or experience frequent gaps |
| Patients on public insurance must regularly reapply to maintain coverage, often leading to coverage gaps |
| Primary care patients and practices benefit when insurance gaps are minimized and patients remain consistently insured |
Non-profit collaborative to support state-of-the-art health information technology (HIT) infrastructure

Supports a Practice-based Research Network (PBRN)
- As of April 1, 2014, the OCHIN PBRN had members in 17 states with >300 primary care clinics, and >2,500 providers caring for >1,500,000 patients
- Most clinics in the PBRN care for low-income families

All clinics share a common HIT infrastructure
Example: Retrospective cohort of children <19 years of age who visited an OCHIN clinic, 2010-2011

Insurance Status at First Visit (n=185,959)

- Medicaid/Medicare: 67%
- Commercial: 12%
- Uninsured: 21%

Outcomes for Children with No Insurance (n=38,726)

- Gained Commercial Insurance: 4%
- Gained Medicaid: 19%
- Uninsured: 30%
- No Further Visits: 47%

Outcomes for Children with Medicaid (n=124,113)

- Kept Insurance: 72%
- Lost Insurance: 24%
- No Further Visits: 4%

Outcomes for Children with Commercial Insurance (n=23,120)

- Kept Insurance: 53%
- Lost Insurance: 42%
- No Further Visits: 5%
8 FQHC clinics selected based on
- High pediatric uninsured rates (>19%)
- Large pediatric panel size
- Interest in study participation

Phase 1: Qualitative data collection and tool development
1) How can patients’ families, medical informaticists, and FQHC staff be engaged in the development of HIT tools to support health insurance outreach?

2) How can HIT resources be used, within the FQHC setting, to reach uninsured children and those at risk for losing coverage?
DATA COLLECTION

- **Workflow observations (~95 hours)**
 - carefully watching how key insurance-related tasks were accomplished in each Federally-Qualified Health Center (FQHC), facilitated by a site visit guide

- **Staff interviews (31)**
 - personal face-to-face interviews utilizing a semi-structured questionnaire, approximately 30-60 minutes

- **Family interviews (19)**
 - personal face-to-face interviews utilizing a semi-structured questionnaire, approximately 15-20 minutes
 - 11 interviews were conducted in Spanish, using an interpreter
Current health insurance outreach strategies:
- Microsoft Excel workbooks
- Monthly review of paper insurance applications
- Review of scheduled patient charts prior to their appointment

Clinicians not currently involved

Key individuals included:
- Front desk personnel
- Insurance enrollment specialists
- Schedulers
- Social workers and community health workers
- Care managers

Existing chronic disease tools could be adapted
STAFF INTERVIEWS

- Insurance is a high-priority issue
- Current strategies were viewed as inefficient and inadequate
- Providers and Medical Assistants should not be involved
- Tools need to be built to function throughout health policy changes
FAMILY INTERVIEWS

- Health insurance is important to families
- Family challenges included:
 - Different coverage end-dates for different children in the family
 - Re-application letters sent to old addresses
 - Paperwork volume
 - Language and literacy barriers
- Families want clinics to assist them
- Families were comfortable with clinics keeping track of insurance information
- Communication strategies families approved of were:
 - Telephone
 - Text messages
 - Letter or email
 - Personal health record
WORKFLOW DIAGRAMS
PROPOSED SUITE OF TOOLS

Electronic Health Record (EHR) Data
- Demographic Data
- Visit Data
- Coverage Data

These data support the following HIT tools:

In-Clinic Tools
- Pre-Visit
- Scheduling
- Check-in Desk
- After Visit

Beyond-Clinic Tools
- Automated Call
- Automated Notification
- Insurance Outreach Coordinator
- Personal Health Record (PHR)

Insurance Assistance for Families
CONCLUSIONS

- HIT can be used to identify, track, and communicate with families regarding their child’s health insurance coverage.
- The IMPACCT Kids’ Care project is partnering with families, medical informaticists, and clinic staff to develop HIT tools.
- We successfully combined qualitative research methods with user-centered design approaches.
- These methods may be applied to other primary care HIT needs.
This study is being funded by the Patient-Centered Outcomes Research Institute (PCORI), PFA Cycle I Contract (2012), Health Systems.

We are grateful to the clinic staff and families who contributed ideas and time to this study.

Study Authors:
- Jennifer DeVoe, MD, DPhil
- Heather Angier, MPH
- Sonja Likumahuwa, MPH, MID
- Jennifer Hall, MPH
- Christine Nelson, PhD, RN
- Kay Dickerson, BA
- Sara Keller, MSW, MPH
- Tim Burdick, MD, MS
- Deborah Cohen, PhD
How to Submit a Question

• At any time during the presentation, type your question into the “Questions” section of your GoToWebinar control panel.
• Select “Send” to submit your question to the moderator.
• Questions will be read aloud by the moderator.
Obtaining CME Credit

This Live activity, Harnessing Health Information Technology to Assist Individuals and Teams: Practical Insights from the Journal of Ambulatory Care Management, PBRN issue, April-June 2014, with a beginning date of 4/29/2014, has been reviewed and is acceptable for up to 1.25 Elective credit(s) by the American Academy of Family Physicians. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

To obtain CME Credit for your participation in this webinar, please:

1.) Complete the online evaluation. You will be prompted to complete this online evaluation when you exit the webinar.

2.) E-mail PBRN@abtassoc.com to request a copy of your CME Certificate of Participation
Upcoming Events

Upcoming AHRQ PBRN Resource Center Webinars (dates/times TBD):

- **May**: Patient engagement in primary care research
- **June**: Contemporary issues in economic assessments of interventions in primary care
- **July**: TBD
- **September**: Good Research Practice
- **October**: Highlights from the JABFM PBRN research issue
- **November**: Evaluation of Practice Transformation

Visit http://pbrn.ahrq.gov/events for information on all upcoming PBRN-relevant events

If you have a suggestion for a new topic or would like to be a presenter, send your feedback to: PBRN@abtassoc.com
Additional Resources

Please visit the

AHRQ Patient Centered Medical Home (PCMH) Resource Center

for additional resources including Research Methods Papers and Recordings of National Webinars:

http://pcmh.ahrq.gov
Are you interested in learning about:

- free, CME-earning National Webinars,
- research publications,
- practical guidance for administering or conducting research,
- funding opportunities, and
- employment opportunities that are relevant to PBRNs, especially around primary care?

If so, join the PBRN Listserv today! PBRN Listserv members receive a bi-weekly digest and other announcements of interest, and are able to reach out directly to the PBRN community by posting to the PBRN Listserv (PBRNLIST@list.ahrq.gov).

To join, simply send an e-mail to the AHRQ PBRN Resource Center (PBRN@abtassoc.com) with the subject “Please add me to the PBRN Listserv.”

Thank you for attending today’s PBRN webinar!